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Development of Artificial Intelligence Support for the
Cryptocurrency Market

Abstract. The difficulty in predicting cryptocurrency prices is due to the instability of the
currency market and interconnected sentiment, regulatory, and technological trends. This
thesis aims to enhance accuracy in price prediction using deep learning architecture. This
thesis intends to increase the likelihood of success in price prediction by implementing
various deep learning architectures. These include Convolutional Neural Networks (CNN),
Long Short-Term Memory networks (LSTM), and hybrid models such as LSTM-CNN and
CNN-LSTM, which are chosen for their ability to capture spatial and temporal patterns in
data. A complete data pipeline is constructed from data processing and normalization to
feature engineering to Optuna for hyperparameter tuning for optimal prediction results.
Prediction experiments yield accuracies and performance validated through performance
metrics. The LSTM architecture achieves the best prediction performance on the Solana
coin dataset, R2 =0.9614 (MSE = 0.000627, MAE = 0.018803). The CNN-LSTM architecture
produces the most consistent prediction performance, R? = 0.9596 (MSE = 0.000655, MAE
=0.019019); the CNN architecture obtains R2 = 0.9582 (MSE = 0.000678, MAE = 0.019855).
The LSTM-CNN architecture produces the most reliable performance on the Ethereum
coin dataset, Rz = 0.9544 (MSE = 0.000761, MAE = 0.019163). Thus, the results suggest that
the LSTM architecture best captures the dependencies and trends over time regarding
fluctuations in cryptocurrency price to yield the highest accuracy when compared to
competing architectures. As for model development and deployment in a production
environment with Flask backend and WebSocket for real-time updates, performance
optimizations via Redis caching, Docker, and CI/CD pipeline ensure deployment, efficacy,

and performance.

Keywords: Cryptocurrency Price Prediction, Deep Learning, CNN, LSTM, Hyperparameter
Optimization, Web-Based Forecasting, Financial Technology



ROZWOJ WSPARCIA DLA RYNKU KRYPTOWALUT METODAMI
SZTUCZNE] INTELIGENC]JI

Streszczenie. Prognozowanie cen kryptowalut jest trudnym zadaniem ze wzgledu na ni-
estabilno$¢ rynku walutowego oraz wzajemne powiazania trendéw sentymentalnych, reg-
ulacyjnych i technologicznych. Niniejsza praca ma na celu poprawe doktadno$ci progno-
zowania cen poprzez zastosowanie architektur gtebokiego uczenia. W tym celu wdrozono
rézne modele glebokiego uczenia, w tym konwolucyjne sieci neuronowe (CNN), sieci
dtugiej pamieci krétkoterminowej (LSTM) oraz modele hybrydowe, takie jak LSTM-CNN i
CNN-LSTM, ktére zostaty wybrane ze wzgledu na ich zdolno$¢ do uchwycenia wzorcéow
przestrzennych i czasowych w danych. Zaprojektowano kompletny pipeline przetwarzania
danych, obejmujacy przetwarzanie i normalizacje danych, inzynierie cech oraz optymal-
izacje hiperparametréw przy uzyciu Optuna, w celu uzyskania optymalnych wynikéw
predykcji. Wyniki eksperymentéw prognostycznych zostaty ocenione za pomocg miar
skutecznos$ci modeli. Najlepsza dokltadno$¢ prognozowania na zbiorze danych Solana
osiggnela architektura LSTM (R? = 0.9614, MSE = 0.000627, MAE = 0.018803). Architek-
tura CNN-LSTM wykazata najwiekszg stabilnos$¢ (R? = 0.9596, MSE = 0.000655, MAE =
0.019019), natomiast model CNN osiggnat Rz = 0.9582 (MSE = 0.000678, MAE = 0.019855).
Model LSTM-CNN wykazal najwyzsza niezawodno$¢ na zbiorze danych Ethereum (R2
= 0.9544, MSE = 0.000761, MAE = 0.019163). Wyniki te sugeruja, ze architektura LSTM
najlepiej uchwyca zaleznosci i trendy czasowe w zakresie fluktuacji cen kryptowalut, osig-
gajac najwyzsza doktadno$¢ w poréwnaniu z innymi architekturami. Wdrozenie modeli
w $§rodowisku produkcyjnym obejmuje backend oparty na Flask, aktualizacje w czasie
rzeczywistym przy uzyciu WebSocket oraz optymalizacje wydajnosSci za pomocg Redis
caching. Ponadto Docker i pipeline CI/CD zapewniajq efektywno$¢ oraz niezawodne

wdrozenie modeli predykcyjnych.

Stowa kluczowe: Prognozowanie cen kryptowalut, Glebokie uczenie, CNN, LSTM, Opty-
malizacja hiperparametréw, Prognozowanie internetowe, Technologia finansowa
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1. Introduction

1.1. Motivation

The initial step of our process was to explore the nature of cryptocurrency and what it
has done to financial markets. At its core, cryptocurrency is a decentralized method of
implementing currency without turning to traditional means of cash. With the advent of
digital currencies like Bitcoin, Ethereum, and Solana, opportunities for international trans-
actions and a lessened need for intermediary third parties have created more channels for
accessing capital that some may not previously have had. Yet for investors and analysts
looking to make sense of the cryptocurrency market, this is a problem. Unlike stan-
dard, conventional financial assets that have a predictable response to macroeconomic
developments and events, the currency of cryptocurrency fluctuates for many reasons
[1]. Therefore, price prediction is required to improve the selection process. The price
dynamics of cryptocurrency are nonstationary and not driven by a stochastic process,
which creates difficulty in forecasting currency fluctuations. For instance, traditional
time-series forecasting with ARIMA and GARCH has shown limited success in forecasting;
however, these techniques do not account for the nonlinear fluctuations associated with
cryptocurrency. Yet, with access to more and more high-frequency trading data and
the worldwide interest in artificial intelligence, approaches based on Such an approach
exploits the changes in price and other non-financial indicators over time to potentially

increase prediction accuracy aside from more traditional methods [2], [3].

1.2. Challenges in Cryptocurrency Price Prediction

However, several challenges hinder the efficacy of deep learning solutions for cryp-
tocurrency price forecasting. While we recognize a few challenges, the most stubborn
one is that the trading of the cryptocurrency market is volatile and speculative; prices
fluctuate from erratic spurts and with frenzied, reactionary trends [4]. Such features
of the currency trading environment present formidable challenges for deep learning
systems, which require perfect situational awareness for generalization across fluctuating
market environments over time. Furthermore, fluctuating intra-market factors like legal
regulations, technological changes, and social sentiments/impacts also contribute to these
challenges [5]. through implementation. It’s not enough to just implement a model; there
are literally hours upon hours of hyperparameter tuning adjusting learning rates, batch
sizes, epochs, etc. For example, in the regression models used for predicting financial
forecasts, there’s an activation function that is important - for open and close, you use the
linear function; for up and down, you use the sigmoid function. If you don’t, you get bad
returns meaning that even if you predict well, the purpose of the prediction fails based
upon the error that is not predictive. Therefore, it’s not only challenging to justify proper

utilization of a model, but an error to utilization that has nothing to do with it can still
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ruin the purpose. necessitated dataset-dependent hyperparameter tuning and feature
selection strategies [6].

1.3. Contributions

This research intends to establish a definitive model for cryptocurrency prediction
by exploring various deep-learning approaches and adjusting them based on a compara-
tive analysis. The deep learning approaches are CNNs, which detect short-term trends
based on the features of specific data sets within the market; LSTMs, which detect trends
based on long-term data dependencies across larger periods; and a blended CNN-LSTM
approach. In addition, hyperparameter adjustment takes place through Bayesian opti-
mization with Optuna to achieve the most fruitful execution and predictions. The pre-
dicted models will be executed in the real world via a deployed full-stack web application
for cryptocurrency prediction with extensive documentation. api. The Application is
a Flask backend that communicates with the Python logic that operates the prediction
generator and a separate package for the socket implementation. The application fron-
tend was created with Next.js, and WebSocket is utilized to guarantee that price feeds
are sent in real-time. All dependencies both domestically and internationally ensure
proper functionality between both sides of the prediction and trading operation. Outcome
generation through data visualization using Recharts and TradingView aids traders in
comprehending and acting upon model outputs[7]. The original contribution of this
research is the extensive analysis of deep learning architectures for cryptocurrency price
prediction and the conclusive seamless hyperparameter tuning and extensive evaluation
of model performance via monetary values of R-squared, Mean Squared Error, and Mean
Absolute Error. Furthermore, the ability to deploy deep learning models in a live web
application for a production environment connects Al-driven financial predictions to

practical use with applicable information for traders and investors alike.

1.4. Thesis Structure

The subsequent chapters are as follows. Chapter 2 contains the literature review of
anticipated cryptocurrency value and a review of deep learning for economic forecasting.
Chapter 3 contains the methodology of the experiment from data collection and process-
ing to model development and processing. Chapter 4 contains the backend development
from API development to WebSocket integration to execution of predictions. Chapter
5 contains the frontend development for human interaction from Ul rendering to live
updating and state management. Chapter 6 contains the deployment and implementation
from Docker installation to CI/CD pipeline construction to stability testing. Chapter 7

contains the results and assessment of the system and potential future work.
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2. Related Work

2. Related Work

The issue surrounding time-series forecasting to predict cryptocurrency values is the

same as it is with any other. Cryptocurrency market fluctuations are temperamental,

volatile, and non-stationary. Yet, similar to the stablecoin research above, many variables

exist that influence cryptocurrency pricing—f{rom token supply and demand to legisla-

tive concerns about the assets and interest by investors to macroeconomic fluctuations.

Yet much of the research below uses deep learning equations to achieve time-stable,

reasonable answers to these pricing projection concerns. The highest outcome of the

significances within the field is as follows.

Table 2.1. Summary of Key Studies in Cryptocurrency and Stock Market Forecasting

Lp | Study (Authors) Model Best Performance
LSTM outperforms RNN and
1 (8] LSTM, RNN, GRU
GRU
5 3] Deep Learning with Technical | Improved accuracy with techni-
Indicators cal indicators
3 [9] Deep Learning Models Enhanced trend prediction
Superior performance in stock
4 [10] CNN-LSTM . o
price prediction
) Effective stock market price
5 [11] Deep Learning Methods )
forecasting
6 2] Deep Learning with Inter-| Improved model interpretabil-
pretability Enhancement ity
Deep Learning with Historical o
7 [13] . Enhanced prediction accuracy
Prices and News
High accuracy in stock price
8 [14] LSTM Model o
prediction
9 15] Hybrid Convolutional Recur- | Effective Bitcoin price predic-
rent Model tion
10 16] Machine Learning Time Series | Accurate financial trend predic-
Analysis tion
. Enhanced prediction perfor-
11 (17] CNN-LSTM Hybrid
mance
Comparative performance
12 (18] CNN-LSTM vs. LSTM-CNN .
analysis
) . Comprehensive model evalua-
13 (19] Deep Learning Comparison .
ion
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2. Related Work

Lp | Study (Authors) Model Best Performance
Effective financial market trend
14 [20] CNN-LSTM Models .
analysis
. Comparative study on stock
15 [21] Deep Learning Models . o
price prediction
. . Improved stock market predic-
16 [22] Hybrid Deep Learning Models ]
tion
. Effective crypto price predic-
17 [23] Deep Learning Models "
ion

Many studies have been done with machine learning and deep learning models to
predict trading in cryptocurrency and stocks. For instance, [8] analyzes the efficacy
of LSTM, RNN, and GRU models to predict stock prices. The models were trained on
historical price data, and with the acquired findings, LSTM was assessed as the most
effective and accurate model in comparison to RNN and GRU.

Also, [3] examines a trained deep learning prediction model using technical indicators
to predict stock price returns. This was effective in showing that using other market
indicators apart from just price history could yield positive results in accuracy. The
advantages of applying CNN-LSTM models for stock price prediction are evaluated by
[10], stating that the advantages of CNN and LSTM over a plethora of other models exist
to render the detection of spatial and temporal dependences of financial time series
data. Therefore, the application of such complex deep learning models in a hybrid form
possesses the possibility of higher prediction accuracy.

Likewise, [17] constructs a CNN-LSTM hybrid model and found positive results in
prediction accuracy because of the effectiveness of combined convolutional and recurrent
networks. In addition to certain deep learning architectures, externally derived features
and salient stock features have been leveraged for training. For instance, [13] trained a
unique deep learning architecture that integrates historical prices and significant trends
in volatility and stock related news over time to greatly enhance prediction quality.

In addition, [14] used an LSTM algorithm to predict stock price and found it to be
highly effective using merely historical price data and its time-series relationship. Addi-
tionally, [15] present a convolutional recurrent approach to Bitcoin price prediction which
suggests we require both convolutional and recurrent layers to analyze trend fluctuations
on minuscule and vast scales. This model achieves an accuracy greater than comparable
model types, which implies that time series prediction works when utilizing blended
approaches.

While much research limited itself to deep learning and the constraints of the data
it generated, there were studies that included other variables from outside the dataset.

For example, one study that determined macroeconomic indicators are important to
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the stability and robustness of the trained models utilized machine learning time series
analysis for stock price prediction with investment firms and macroeconomic trends. [16]
Also, a study devoted to explainable Al for financial time series forecasting found that
the use of interpretability techniques helps determine what aspects contribute to deep
learning predictions. [12]

There are also recent findings about hyperparameter tuning. Reported by Ti (2024),
after assessing various deep learning models, he concluded that trained models without
hyperparameter tuning yield subpar results—meaning automatic hyperparameter tuning
does seem to enhance the accuracy and reliability of the model. When it comes to deploy-
ment, the shift from testing to real-time applications went without a hitch. Therefore, [23]
convened a conference on the deep learning applications and the assessment of real-time
deployment was justified. Similarly, for deployment [11] utilized deep learning at stock
market price prediction and subsequent assessment effective in real time.

But the pertinent research suffers, too. The vast majority of papers assess merely
calibrating a model to achieve predicted performance irrespective of good quality and
diverse input data. There are options upon options for one cryptocurrency or one stock
price as if it’s not related to anything else in the world and capricious assignment of data
over time. Even worse, when predictions are correct, it’s erroneous that they are correct
based on the convoluted, nonstationary nature of financial time-series data. This study
builds on similar research because it utilizes a deep learning model with a comprehensive
cryptocurrency and stock dataset collated in one location. Where the aforementioned
studies create a model to predict one asset at a time, our model predicts many assets
simultaneously, meaning it considers cross-asset correlations that could enhance predic-
tions. Furthermore, instead of testing for price prediction ability or directional prediction
ability, as done in many studies like the one by Zhang, Chan, and Lin (2024) [10] and Liu,
Li, and Li (2023) [24], we test both to reveal the advantages of multidimensional data for

profitable outcomes.

3. System Architecture

Our capstone project for software engineering is a full stack web application that
utilizes machine learning to predict cryptocurrency prices in real time. We have utilized
system design concepts to create an architecture that is modular, scalable, and main-
tainable. Layers of the system connect to one another for communication yet serve
independent purposes for effective functionality, performance, and future expansion ease.
Ultimately, the architecture includes multiple tiers from client interface to API gateway
to application layer to ML pipeline to database/storage. The client interfaces with the
system through a web-based dynamic Ul that issues RESTful API calls to the server side
and establishes a WebSocket connection for server push updates.

13



The API gateway is Nginx, a reverse proxy for API request redirection, SSL termination,
and load balancing, which enhances application performance and security. Flask is the
framework used on the back-end. The back-end operates like a motherboard, processing
API requests and WebSocket interactions while communicating with our app and the ma-
chine learning models. It requests the historical pricing, cleans it up, and sends it down the
machine learning pipeline convolutional neural networks (CNN), long short-term memory
(LSTM), CNN-LSTM, LSTM-CNN. It sends back to our app the derivative data used to
create a prediction matrix on the dataset and relays the output back to the back-end to be
sent to the user. Additionally, since Redis is the caching service used in the application,
the back-end can perform actions without having to reprocess for quicker results.

We utilize Optuna for hyperparameter tuning to train and adjust our models to guar-
antee we're always using suitable parameters. As for our layers of storage, we use SQLite to
store optimization results, Redis to store cached predictions, and we use the filesystem
as well for model outputs and visualizations. This creates a level of save efficiency of
storage for immediate rapid processing and long-term saves. We ensure security by
using TLS, CORS, and rate limiting policies to ensure that only authenticated users can
access and maintain data integrity. We ensure consistent functionality and reliability by
using asynchronous processing with websockets for live streaming so that we can ensure
responsiveness even under heavy load. Therefore, our application is operated reliably
and performs effectively for real-time cryptocurrency price prediction due to scientifically
based architecture developments and machine learning trained developments.The system
data flow is displayed in Figure 3.2

The system architecture is displayed in Figure 3.1. While this section only provides
a brief overview of the layers composing the architecture, sections three and four delve
deeper into each layer client-server communication protocol, backend layers responsible
for processing and prediction, and the trained machine learning validation pipeline con-
structed for validation of a successfully trained model. We assess how the frontend fulfills
requests, how the backend composes with third-party repositories to fulfill data processing,
and how trained machine learning models are reintegrated into the architecture to provide
prediction.

From this flowchart 3.2, we can deduce that a machine learning structure is followed.
There is a client interfacing with a Flask API for training and predicting. The notion that the
API operates via WebSocket is encouraging, meaning that real-time renderings and results
can be communicated back to the client during training and predicting. For training,
the Data Processor gets input from an external source, cleans and transforms the data
to pass along to the Model Pipeline, which trains the model based upon epochs. When
it finishes, the model is saved. For predicting, the client pings the API to get predictions.
The API loads the saved model and gets transformed data to give back predictions. Those

predictions return to the client along with any visual renderings.

14



4. System Architecture
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4. System Architecture
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4. Machine Learning Development

4. Machine Learning Development

The task of predicting cryptocurrency prices is a broad and complex undertaking,
as it requires assessing the unpredictable condition of the economy, and the nonlinear
association with determining factors and relative transactions are not correctly assessed by
typical financial models. Thus, a study of deep learning approaches is necessary. Therefore,
the subsequent use of CNNs, LSTMs, and a hybrid of both (CNN-LSTM, LSTM-CNN)
evaluates deep learning advancements for an effective and accurate predictive approach.
In addition, the models undergo hyperparameter tuning with the Optuna hyperparameter
tuning engine for optimization. Error metrics and predictive accuracy. This chapter
outlines the dataset and relative data transformations, model configuration and training,
and evaluation of experimental results.

4.1. Data

The source of the data for this project is daily historical data from 1.1.2021 to present.
The three cryptocurrencies analyzed are Cardano, Ethereum, and Solana. These coins
were selected based upon their market cap and volume traded so that the modeling would
be more stable and any forecasting from such data would be applicable. The source of the
data is from Yahoo Finance API (yfinance), which is credible for this currency. The test
set was essentially three sets training, validation, and test set with 60% for training within
2021-2022. The validation set was 2023 in real-time data which determined if forecasting
output was accurate. Therefore, the testing was to forecast 2023 values based upon the
training/validation window. From July 2023 onward until the available timeline cut-off
date, 20% of the testing data was reserved for the project. This was to guarantee sufficient

unseen out-of-sample data to test for model generalization.

4.1.1. Descriptive Statistics and Data Characteristics

Table 4.1 provides summary statistics of the dataset, including key statistical measures
such as mean, median, standard deviation, skewness, and kurtosis for each cryptocur-

rency.
Table 4.1. Descriptive statistics for ADA-USD, ETH-USD, and SOL-USD.
Asset Minimum | Maximum | Mean Std. Dev. | Median Skewness
ADA-USD | 0.175 3.098 0.892 0.512 0.895 0.48
ETH-USD | 730.37 4,891.70 2,487.34 1,243.56 2,510.65 -0.32
SOL-USD | 1.84 260.98 58.43 73.1 45.21 1.15

Figure 4.1 illustrates the price trends of the three cryptocurrencies over the study

period, highlighting the volatility and price fluctuations that characterize these assets.
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Figure 4.1. Daily Price Trends of Cardano (ADA-USD), Ethereum (ETH-USD), and Solana
(SOL-USD)

4.1.2. Dataset Splitting and Normalization

We utilized transformation of the data set via MinMaxScaler to train the model because
transforming each value to be situated within the [0, 1] range would not only normalize
but also allow for no value to overpower model training based on a value larger than
any other that was left in place, thus allowing for more equalized training. Following
normalization, we established a train/validation/test split to ensure test performance was
assessed on non-trained data. 60% constituted the training set, 20% the validation set,
and 20% the testing set. This was a stratified sample and enables appropriate learning and
performance assessment on unseen sampled data.Figure 4.2 is important to assess relative
to how the data split for ADA-USD, ETH-USD, and SOL-USD. It presents a visual for series
data trained, validated, and tested, with a dashed line representing where train/validation
exists and a dotted line for validation/testing. Ultimately, however, the relevant sections
where validation and testing exist are shaded in direct contrast to the lines so that it’s clear
where the focus resides for validation and testing to better assess generalization in an
external/uncontrollable market situation apart from trained.

4.1.3. Stationarity and Data Transformations

To assess the stationarity of the time series data, we conducted the Augmented Dickey-Fuller
(ADF) test. Table 4.2 presents the test statistics and corresponding p-values for the original
and transformed series. The results indicate that the original time series for ADA-USD
and ETH-USD are non-stationary, as evidenced by p-values greater than 0.05. However,
after applying the log returns transformation, all series became stationary (p-value < 0.05),
making them suitable for deep learning model training.

4.2. Preprocessing Techniques

The following preprocessing steps occurred:

e Missing Data Imputation: Linear interpolation is used to impute missing data. If
gaps are too big, the entry for that observation will be dropped for the entire timestep.
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Figure 4.2. Dataset Splits for Cardano (ADA-USD), Ethereum (ETH-USD), and Solana (SOL-USD),
Highlighting Training, Validation, and Testing Partitions

Table 4.2. ADF Unit Root Test Results for Cryptocurrency Time-Series

Time-Series ADF Statistic p-value
ADA-USD (Level) -1.831 0.364
ETH-USD (Level) -2.058 0.261
SOL-USD (Level) -3.880 0.002*
ADA-USD (Returns) -36.83 0.000*
ETH-USD (Returns) -36.83 0.000*
SOL-USD (Returns) -36.83 0.000*

e Outlier Detection and Correction: Outliers are detected using Interquartile Range
(IQR). If an observation is above 1.5 - IQR, then it is either capped at the floor value
or substituted with the median of that feature’s distribution.

e Feature Normalization: MinMaxScaler transformation to ensure all numeric features
are in a comparable [0, 1] range across various cryptocurrencies.

e Feature Engineering: In addition to the basic OHLCV features, additional technical
indicators were created through the Relative Strength Index (RSI), Moving Average
Convergence Divergence (MACD), and Exponential Moving Averages (EMA) for
increased prediction efficacy.

e Data Creation: A 60-day sliding window created the dataset, which ensured time
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series integrity as each window was used as input features to predict the target of
the next day’s closing price.

4.3. Model Architectures and Layers

This section provides a detailed mathematical explanation of the model architectures
employed in our study. The architectures leverage convolutional neural networks (CNNs)
and long short-term memory (LSTM) networks to capture both spatial and temporal

dependencies in time-series data.

4.3.1. Convolutional Neural Network (CNN)

CNNs are designed to extract spatial features from input sequences through convolu-
tional operations, detecting local patterns such as upward or downward trends, crucial for
financial forecasting. The convolution operation is defined as:

k
(f*g) =) fl)glt—1i), 1)
i=0

where:

e (i) represents the input sequence,
e g(t—i) represents the convolutional kernel,

e kisthe kernel size.

If padding is applied, the effective input size changes as:

Lin —k+ Zp
Loyr = f +1, (See, e.g., [25]) 2)

where L;, is the input length, p is the padding, and s is the stride.
The activation function used is the Rectified Linear Unit (ReLU) [26]:
ReLU(x) = max(0, x).
MaxPooling is applied to reduce dimensionality by taking the maximum value over a

pooling window:

i = maxx;.
y] iEPj !

4.3.2. Long Short-Term Memory (LSTM)

LSTM networks specialize in sequential data processing by maintaining memory over
long sequences, which helps capture long-term dependencies. Unlike traditional RNNs,
LSTMs mitigate the vanishing gradient problem by introducing gated units [27]:
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ir=0(Wix;+Ujhi—1 + by),
ft=0Wpsx;+Urh1 + by),
0y =0(Wox;+Uohi—1+ bo),

¢y =tanh(W,x;+ U hi—1 + b,),
cr=ft0ci1+1;08;,

hy = o, @ tanh(cy),

where i;, f;, and o; are the input, forget, and output gates, respectively, and c; is the cell
state.
Here, the logistic sigmoid function o (x) is defined as:

o(x) = .
(%) l1+e*

4.3.3. CNN-LSTM Hybrid Model
The CNN-LSTM model integrates CNN’s ability to extract spatial features with LSTM’s

capability to model temporal dependencies. The convolutional layers first extract mean-

ingful patterns before passing the processed sequence to LSTM layers.

Table 4.3. CNN-LSTM Model Architecture

Layer Description

Input Accepts a 60-day time-series sequence (shape: (60,1))

ConvlD 37 filters, kernel size 2, ReLU activation. Detects local-
ized trends.

MaxPooling1D Pool size: 1. Reduces complexity while maintaining
key features.

LSTM (Layer 1) 103 units, return sequences=True, tanh activation.
Captures longer-term dependencies.

LSTM (Layer 2) 16 units, return sequences=False, tanh activation. Fi-

nalizes sequential representation.

Dense (Hidden Layer) 50 units, ReLU activation. Combines extracted fea-
tures.

Output Single unit (linear activation) for price prediction.

4.3.4. LSTM-CNN Hybrid Model

The LSTM-CNN hybrid model starts with LSTM layers to capture temporal dependen-
cies before applying convolutional layers for spatial feature extraction.
Parameters: The model contains a total of 52,934 trainable parameters, optimized for

efficient learning and prediction.
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Table 4.4. LSTM-CNN Hybrid Model Architecture

Layer Description

Input Accepts a 60-day time-series sequence (shape: (60,1))

LSTM (Layer 1) 81 units, return sequences=True, tanh activation. Cap-
tures long-term dependencies.

LSTM (Layer 2) 46 units, return sequences=True, tanh activation. Re-
fines temporal representations.

ConvlD 95 filters, kernel size 4, ReLU activation. Detects local-
ized trends and patterns.

MaxPooling1D Pool size: 3. Reduces dimensionality while preserving
key features.

Flatten Converts feature maps into a one-dimensional vector.

Dense (Hidden Layer) 50 units, ReLU activation. Combines learned repre-
sentations.

Output Single unit (linear activation) for price prediction.

4.4. Hyperparameter Optimization

Hyperparameter tuning is essential to improve predictive accuracy and generalizability
of deep learning. Several hyperparameter-related changes to the deep learning models
are made to determine the best-suited configuration to avoid overfitting. Therefore, a
hyperparameter tuning experiment was conducted in this context. The most effective
automated hyperparameter optimization library was used—Optuna. The sampling pa-
rameter used to investigate the hyperparameter space was the Tree-structured Parzen
Estimator (TPE). For pruning, median-based pruning was chosen to eliminate any trials
that failed. The objective function to evaluate the The best hyperparameter selections
from all the iterations by currency. Each model/cryptocurrency pairing went through
hyperparameter tuning for 15 iterations for each cryptocurrency. Each iteration was the
best parameter found by maximum accuracy. As for the combined baseline model, there
were 15 iterations of the hyperparameter tuning per cryptocurrency, which equals 120
iterations in total. Also, for ETH-USD, there was a combined baseline model created with
15 more iterations per model, bringing its total to 240 iterations. The range for iterations
was based upon batch sizes (16, 32, 64, 128), dropout (0.1 to 0.5), learning rate (1e-4 to
le-2), dimensions of the convolutional filters (20 to 128), kernel size (2, 5), and LSTMs. The
CNN-LSTM and LSTM-CNN used LSTM-related hyperparameters specific to both CNN
and LSTM to ensure the hybridized model was done in the most efficient way possible. 4.3
illustrates where the hyperparameters chosen were applied. Histograms for batch size,
dropout, learning rate, and total parameters across different models. These frequencies
show the tuning tendencies and which parameters within what ranges yielded the best
results.

The effectiveness of the hyperparameter tuning is illustrated in Figure 4.4.

22



4. Machine Learning Development

Batch Distribution

Hyperparameter Distributions

Dropout Distribution

2
g

Frequency

&

Frequency

20

60 80
Batch

Learning Distribution

025 030 035 0.40 045
Dropout.

Params Distribution

Frequency

0.004 0.006
Leaming

s
2 —
25 — —
g2
g
g
&
15
|
| -
10
s
0.008 0010 100 120 140 160 180 200

params

Figure 4.3. Hyperparameter Distributions Across Trials.
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Figure 4.4. Hyperparameter Impact on Model Performance.

To evaluate model performance, three key metrics were employed: the R? score, Mean
Squared Error (MSE), and Mean Absolute Error (MAE). The performance of the best models
across different architectures is summarized in Table 4.5.
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Table 4.5. Model Performance with Optimized Hyperparameters

Model MSE  MAE R?
LSTM 2208.65 32.98 0.9542
CNN 7114.40 64.24 0.8524

CNN-LSTM 2229.16 33.65 0.9538
LSTM-CNN 6693.68 66.15 0.8611

Figure 4.5 provides a visual representation of the best R? scores achieved for each
cryptocurrency ticker across different architectures, demonstrating that the LSTM-based

models consistently outperform pure CNN models.

[ cnn mm cunsTM  mE LsTM LSTM-CNN |

Best R2 Scores by Ticker and Model Type

Best R2 Score

ADA-USD ETH-USD SOL-USD
Ticker

Figure 4.5. Best R? Scores by Ticker and Model Type.

Furthermore, all other regularization and optimization techniques were applied to
guarantee the model was as precise and consistent as possible. For instance, early stopping
was used with a 10-epoch patience to avoid overfitting. The ReduceLROnPlateau scheduler
reduced the learning rate when increases and decreases of validation loss were observed.
Batch normalization was used for stabilized training; dropout regularization was used to
avoid overfitting and gradient clipping prevented overly powerful gradients—and there
would be many, for example, with LSTM-based models to prevent exploding gradients.

Performance trends over time were also analyzed to assess the effectiveness of these
strategies. Figure 4.6 illustrates the temporal evolution of R? scores and Mean Squared
Error across different models, further validating the robustness of the hyperparameter
optimization process.
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Figure 4.6. Performance Trends Over Time for Optimized Models.

These findings suggest that aside from improved forecasting performance of the
LSTM-based architectures for cryptocurrency price prediction, other factors are at play.
Standardized hyperparameter tuning makes the outcomes more translatable to reality.
When manual and automatic tuning create consistency, the validity and correctness of the
findings suggest that deep learning methods can be successfully used for financial time
series prediction especially in cryptocurrency. To detailed study outputs are documented

and added into apendicies 14 and optuna results for each dataset with all trials.

5. Backend Development

The cryptocurrency application server in this thesis is designed with modular, scalable,
and maintainable considerations on the backend. The backend implementation is based
on the Flask framework to provide RESTful API endpoints for model training and predic-
tions, in addition to WebSocket for real-time feed. Docker is used for containerization.
The system architecture consists of the following technologies. The web framework is
Flask, and two-way real-time communication is created with Flask-SocketIO. The machine
learning is performed via TensorFlow and Keras. Data processing and feature extraction
are done through Pandas, NumPy, and Scikit-learn. Redis was used for cache and message

queuing, and Pydantic for request validation and schema.

5.1. API Design and Implementation

The backend of the thesis project consists of RESTful API endpoints, well documented,
and follows software development practices. The specific endpoints include one to train
the model, one to create predictions, and one to check status. They include input valida-
tion, uniform logging, and access control mandated for enhanced security and depend-
ability in addition to literally following backend bests for server creation.The architecture
is modular and scalable, ensuring that future expansions or enhancements do not require
a complete overhaul. Additionally, caching mechanisms are implemented to minimize lag

and prevent server overload caused by redundant API calls
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5. Backend Development

Table 5.1. REST API Endpoints

Method Endpoint Parameters

Description

{"ticker": str,
"model": str,
"start_date":
"end_date":
"lookback": int,
"epochs": int}
{"start_date":
None

str,
str,

POST /train

POST
GET

/predict int}

/health

str, '"days":

Initiate model training.

Generate predictions.
Check system health.

curl -X POST -H "Content-Type: -d
"ticker": "BTC-USD",

"model": "LSTM",

"start_date": "2023-01-01",

"end_date": "2023-01-10",

"lookback": 60,

"epochs": 50

http://localhost :5000/train

application/json"

} )

{

Listing 1. Request Example for /train

"20240328153045",

"success",

"request_id":
"status":
"message":
"data": {

"train_metrics": {

" ": 123.45,"rmse":
24571.23 %,
"test_metrics": {

"Training started successfully",

mae 156.78, "r2":
"mse":
145.67,

"mse":

"mae": "rmse": 178.90,

"r2": 0.86,
"history": {

"mape":

"loss":
[0.0256,
"training_duration":
"plots": {

"val_loss":

"training_history"

"predictions":

"residuals":

"error_distribution":

"qgq_plot":

"prediction_scatter":

"bollinger_bands":
"momentum":
"volume_profile":

"drawdown":

26

2.67,
[0.0234,
0.0178,
145.67,

0.0156,
0.0145,

: "base64_encoded_image_data...

"base64_encoded_image_data...

32000.10 1},
0.0123,

"base64_encoded_image_data...

>

"base64_encoded_image_data...",

B

0.89,mape": 2.

-]

"base64_encoded_image_data...",

"base64_encoded_image_data...",

"base64_encoded_image_data...

"base64_encoded_image_data...

B

"base64_encoded_image_data...

"base64_encoded_image_data...

34,

B

n
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Listing 2. Response Example for /train

curl -X POST -H
"start_date":
"days": 10

http://localhost :5000/predict

"Content -Type: application/json" -d

"2023-01-01",

} )

'

Listing 3. Request Example for /predict

"20240328153145",

"success",

"request_id":
"status":
"data": {
"predictions": [
{
"timestamp": "2023-01-02T00:00:00",
"predicted_value": 42150.25,
41950.75,
42349.75,

0.95 }

"lower_bound":
"upper_bound":
"confidence":
1,
"model_config": {
"model": "LSTM",
"train_test_split":
"BTC-USD"

"lookback":
0.8,

60,
"random_seed":

"batch_size":
42,
"ticker":
},
"data_range": {
"start_date": "2023-01-01T00:00:00",
"end_date": "2023-01-10T00:00:00",

"prediction_start": "2023-01-11T00:00:00"

64,

Listing 4. Response Example for /predict

curl http://localhost:5000/health

Listing 5. Request Example for /health

{"status": "healthy", "timestamp": "2024-10-27T10:00

:00"}

Listing 6. Response Example for /health
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5.2. Real-time Communication and WebSockets

Real-time updates are essential for actively monitoring the training process and visu-

alizing model performance. We use WebSockets to transmit periodic updates regarding

training loss trends, validation performance, and estimated completion times. This en-

sures the frontend displays the latest model progress.

Table 5.2. WebSocket Events

Event Description Example Payload
training_update Training progress updates, including {"epoch": 10,
epoch, loss, and progress percentage. "loss": 0.23,
"progress": 20}
validation_update Validation metrics like MSE, MAE, and {"mse": 2208.65,
R-squared. "mae": 32.98, "r2":
0.954}
visualizing_update Visualization plots (e.g., loss curves) as {"plot":
base64 encoded images. "loss_curve",
"image":
"data:image/png;base64"}
error_log Error notifications with details. {"error": "Training
failed", "details":

"Insufficient data"}

The following visualizations are streamed via WebSockets in real-time: Training History,
Model Predictions, Residual Analysis, Error Distribution, Q-Q Plot, Actual vs. Predicted
Scatter Plot, Rolling Performance Metrics, Price Action (Candlestick Chart), Bollinger

Bands Analysis, Momentum Indicators, Volume Profile Analysis, and Drawdown Analysis.

5.3. Request Validation with Pydantic

We utilize Pydantic models to validate all incoming API requests, ensuring data in-

tegrity and preventing common vulnerabilities. This enforces schema consistency and

contributes to the robustness of the backend.

from pydantic import BaseModel, Field,
from typing import Optional

from datetime import date

class PredictionRequest (BaseModel):
date
Optional [int] =

start_date:

days: Field (default=15, ge=1,
@field_validator (’start_date’)
def start_date_must_be_before_today(cls, v):

if v > date.today():
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raise ValueError(’start_date cannot be in the future’)

return v

class TrainingRequest (BaseModel):
ticker: str = Field(..., min_length=1, max_length=10)
model: str = Field(..., min_length=1, max_length=10)
start_date: date
end_date: date
lookback: Optionall[int] = Field(default=8, ge=1, 1le=60)
epochs: Optional[int] = Field(default=100, ge=1, 1e=1000)

@field_validator (’end_date’)
def end_date_must_be_after_start_date(cls, v, info):
start_date = info.data.get(’>start_date’)
if start_date and v <= start_date:
raise ValueError(’end_date must be after start_date’)

return v

@field_validator (’ticker?)
def validate_ticker(cls, v):
if not all(char.isalnum() or char == ’-’ for char in v):
raise ValueError(’ticker must contain only letters,
numbers, and hyphens’)
return v.upper ()

Listing 7. Pydantic Validation Examples

5.4. Redis Integration

Redis plays a crucial role in optimizing the backend by serving as both a caching layer
and a message broker.

Caching: We use Redis to store frequently accessed data, such as historical price data
and intermediate model predictions. This reduces redundant computations and database
queries, improving latency and response times. Incoming requests first check the Redis
cache. A cache hit retrieves data directly from Redis, bypassing slower data sources. A
cache miss triggers fetching from the source, performing calculations, and then storing
the result in Redis for future hits. A well-designed caching strategy, including appropriate
cache

6. Frontend Development

This section outlines the development of the cryptocurrency thesis project’s front end.
Ultimately, the front end would allow a user to realistically predict prices in real-time,
observe trained models, and receive incremental updates via WebSocket in a responsive,

user-friendly, and accessible setting. Frontend development focused on Ul/UX, state
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control, and data visualization to ensure the smoothest experience for anyone attempting
to trade or just analyze the information. To ensure ease of development and a uniform

user-facing experience, much of the component library Shadcn Ul was used with Nextjs.

6.1. Architecture and Design

Frontend is constructed with Next.js and a component-based architecture for modular,
maintainable, and scalable endeavors. Axios is used to fetch API data, and React Query is
used for caching and establishing server state in the background and in the foreground.
Zod is used throughout the application for schema validation for universal data use. State
management is a scalable effort, and the integration of React Query and React Hook Form
provides application logic and form validation, respectively. WebSockets enable real-time
updates to guarantee instantaneous results of training efforts and seen predictions. The
user interface is responsive with a mobile-first approach and adjustability across screen
sizes, dark/light themes, and accessibility features for any user need.

6.2. Dashboard Integration

Instead of separate applications and screens for analysis, a dashboard was created
to house the various widgets for prediction market analysis, prediction accuracy, and
live training status for a unified, cohesive critical experience. Implemented with a grid
layout where elements take only what is needed on the screen or device to display, it is
highly responsive no matter the sizing. Yet, one of the best features of the dashboard
is the ability to resize panels and dictate how segmented one’s screen should be by the
various widgets. ResizablePanel and ResizablePanelGroup components give dedicated
space so live market fluctuation metrics can take up an entire pane of the screen without
overlap from machine learning accuracy metrics. If one insight is more important than
another at a specific time, it’s easily adjustable without losing access to critical information.
As for the aesthetic nature of the dashboard, ShadCN UI components were integrated
into a consistent, modern inclusive experience across varying hierarchies to ensure a
seamless flow from navigation to forms to animated components for the most proactive
and retroactive use of these systems. Furthermore, static data generates in real time to
toggle from historical data trends to current pricing with conditional filtering for interest
in specific cryptocurrencies or certain windows of time. Thus, these functionality-driven
additions create a financial analytical hub that encourages versatility and ease of use for
real-time assessment opportunities. Figure 6.1 shows a glimpse of the entire system with

major market analyses and machine learning observance functionality.

6.3. Widgets

Our frontend consists of multiple widgets and reusable components, each designed to

provide real-time insights into cryptocurrency trends and model performance.
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Figure 6.1. Cryptocurrency Prediction Dashboard

6.3.1. Market Overview Widget

We build the front end in Next.js. Therefore, we adopt a modular component-based ap-
proach for better maintainability and scalability. We make API calls using Axios and employ
React Query for server state management and caching, including background-fetching
refetches automatically. We use Zod for schema validation. We apply a similar state
management approach to ensure consistent state management methodology throughout
the app. We utilize React Query and React Hook Form for form validation and optimal state
management. We employ WebSockets for real-time updates so users see their training sta-
tus and predictions updated as they work on their training. Finally, we have a mobile-first
responsive design. We ensure theme accessibility as well and supports the dark themes
and light themes.

Figure 6.2 displays the Market Overview Widget, highlighting key market indicators
fetched from the CoinGecko API.

6.3.2. Technical Analysis Widget

The Technical Analysis widget provides a summary of trading indicators such as RSI,
MACD, and moving averages. In addition, we selected the TradingView Advanced Charting
Widget integration because it offers users the opportunity to use and discover a plethora
of technical trading options and features—configurable indicators, annotation tools, and
configurations for chart types. These indicators help to determine various trends to make
proper trading decisions. Notable features include live buy and sell recommendations
based on technical trading indicators, the ability to create support and resistance lines,

and customizable settings for various trading indicators.
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Figure 6.3. Technical Analysis Widget

Figure 6.3 demonstrates the Technical Analysis Widget, showcasing the integrated
TradingView charting tools.

6.3.3. Machine Learning Model Widget

The Machine Learning Model Widget is a main widget in dashboard that can train
and test selected machine learning models to dynamically predict cryptocurrency prices
and render such predictions visually as it operates. Furthermore, the web application
includes a guided step-by-step process to ensure you can engage successfully with every
part of making the model and rendering the prediction visualization. For example, the
initial step involves the training parameters, which include which cryptocurrency ticker
(BTC-USD, ETH-USD, etc.), lookback period (How many days back will be analyzed to
predict price?), type of model (CNN, LSTM, CNN-LSTM, LSTM-CNN), batch size , and
epochs. In addition, the provided configurations permit the tuning of the learning rate,
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batch size, and epochs. Moreover, by selecting the custom beginning and ending dates
option, the user can specify which historical data he or she wants to utilize. Yet after all of
this is set, the final action is to push the training button, which executes a POST request to
the ’/train’ route in the back-end to start the modeling training pipeline.

As the model trains, for example, the widget updates the user in real-time via Web-
Sockets a live, predictable, continuous increments of where they are within the epoch,
decreased training/validation loss, and predicted time remaining. These increments
provide awareness to the user of how their adjustments and rectifications affect over time
regarding subsequent epochs and whether they’ve appropriately trained their model. In
addition, receiving real-time updates brings the user up to speed with every achievement
instantly. Subsequently, after the widget trains, it enters the testing phase whereby in-
dicators of model success are offered including Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), R2, Mean Absolute Percentage Error (MAPE), and Mean Squared
Error (MSE) during both the training and testing stages. The thorough assessment of
success aids in modeling reliability and optimal choice for application. In addition to
being able to visualize training loss by epoch and in graphic and rolling averages/st.
deviations, one can see predicted vs. actual increases/decreases and related distributions
and Q-Q plots of residuals visually. There are also candlestick charts with Bollinger Bands
for additional technical analysis. Ultimately, forecasting is always an option. By selecting
a forecasting horizon (i.e., 15 days) and a starting point of where to begin forecasting,
for example, the widget employs the fitted model to generate a forecast and displays the
findings with corresponding upper and lower bounds to gauge variability in forecasting to

ensure accurate budgeting.

Model Progress
Training  Evaluatng  Visualzing  Predicting  Results

Parameters Training Evaluating Visualizing Predicting Results

Crypto Ticker Lookback Period Model Type Batch Size

ETH-USD 8 CNN-LSTM 64

Epochs Start Date End Date

Figure 6.4. Phase 1: Training Form

Figures 6.4 through 6.9 illustrate the various stages of the Machine Learning Model

Widget, from training initiation to prediction results.
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Figure 6.5. Phase 2: Training in Progress
Model Progress
In progress.. 85%
Parameters Training Evaluating Visualizing Predicting Results
Metric Train Test
MAE 731938 90.3935
RMSE 103.9018 123.5625
R2 0.9910 0.9293
MAPE 78016 28744
MSE 10795.5863 15267.6945
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Figure 6.7. Phase 4: Generated Plots
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Figure 6.8. Phase 5: Prediction Form
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Figure 6.9. Phase 6: Prediction Results
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6.4. WebSocket Communication

Socket.IO enabled WebSocket communication on the front end; a custom React hook
was developed to handle the WebSocket connection for functionality and implementation
15. WebSocket communication on the front end is essential because this portion of the
project needs real-time updates during model training and subsequent price prediction
and service retrieval. Therefore, having separate WebSocket streams allows the user to
receive real-time updates on critical functions and enhances overall functionality. For
instance, during model training, loss metrics are displayed to the end user in real time
along with training progress and estimated time of arrival. Prediction works the same
way. As visualizations happen, more data is constantly being inputted into the model and
similarly, losses are calculated on dynamic graphs in real time. With real-time accuracy
seeming through the roof, there was little to no latency. This reduction in latency comes
from the use of WebSockets and the ability to give end users real-time data without having
to refresh, pause, or restart progress ever.

6.5. API Integration

Our frontend application communicates with the backend through REST API end-
points. We employ React Query for our API calls, meaning we benefit from caching, error
boundary creation, and background refetching. Thus, the chances of duplicate network re-
quests are minimized and our application runs more seamlessly. Furthermore, we employ
Zod for schema validation of returned API response data so that we experience type safety
on the frontend instead of dealing with unexpected issues. All API calls are validated in
order to ensure accurate data entry in addition to error handling. The application executes
asynchronous calls with loaders and error messages. In addition, the use of WebSockets
enables the sending of real-time updates to the client side as well without the need for a

page refresh.

6.6. Theme

We also have a dark and light theme rendered on the frontend for user-selection
viewing, which is crucial relative to the user preferences. We use the next-themes library
to achieve theme switching. The ThemeProvider defaults to reading the system theme.
With respect to styling, Tailwind CSS and CSS Modules are utilized to create a consistent,
responsive, and low-maintenance look across the application. CSS Modules provide a level
of conflict avoidance between components with scoping when appropriate, while Tailwind
provides a utility-based approach for applying style. With regards to the persistence of
user theme choices, the theme state is stored in local storage so that theme preferences are
consistent across use. Also, we utilize React’s Context API straight in our ThemeProvider,
so state is exposed globally.
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Figure 6.10. Dark Theme

Figure 6.10 demonstrates the dark theme option, providing an alternative visual expe-
rience. The dark theme is designed to reduce eye strain in low-light environments, while
the light theme is suitable for well-lit settings. Users can easily toggle between the two

themes using a designated control within the application’s settings.

6.7. Environment Configuration

We use .env files to guarantee our environment variables for configuration variables
such as API endpoints, WebSocket links, and integration third-party URLs. Thus, irre-
spective of the configuration established, we can interchangeably use dev, staging, and
production environments with no need to adjust any code. As far as .env file deployment

is concerned, each environment has its own configuration.

NEXT_PUBLIC_BASE_URL=http://localhost:5000
NEXT_PUBLIC_CRYPTO_URL= % URL for additional crypto data
NEXT_PUBLIC_TRADING_VIEW_URL= ¥ URL for TradingView widget

Listing 8. Environment Variables for Client

DOCKERHUB_USERNAME=username
DOCKERHUB_TOKEN=token
VERCEL_TOKEN=vercel_token
VERCEL_ORG_ID=org_id
VERCEL_PROJECT_ID=project_id
NEXT_PUBLIC_BASE_URL=http://localhost :5000

Listing 9. Environment Variables for CI/CD Github Actions

37




7. DevOps and Deployment

Listing 8 and 9 illustrates an example of how environment variables are configured.
This separation of configuration from code promotes security best practices, as sensi-
tive information is not embedded directly within the application’s source code. It also
simplifies the deployment process, as configurations can be easily adjusted for different
environments.

7. DevOps and Deployment

This chapter is devoted to the DevOps methodology and deployment options to create
this thesis study application in a sustainable, scalable, and stable manner. For ease of cou-
pling operation during development and production—and within the GitHub repository,
containerization, CI/CD tools, cloud hosting options, and security considerations are all
addressed.

7.1. Containerization

Containerization is the primary deployment mechanism since it ensures that wherever
the application runs, it'll run in the same environment. We use Docker to deploy a
container, which is a lightweight, portable version of the application backend and all
pertinent dependencies. Our backend container is simply the Python runtime, running
the Flask app and its necessary libraries. Furthermore, we also run a Redis container
on its own, but we only access it for caching and WebSocket event handling. We create
our container from a Dockerfile, following containerization and security best practices,
which efficiently leads to a minimal footprint image, necessary dependencies, and security
precautions. For example, our installation consists of installing system dependencies,
setting up environmental variables, and creating a non-root user to avoid permission
issues later. However, this means that the application can run independently of the
operating system and required packages, which, for further portability and repeatability,
is a good thing. Furthermore, running under a non-root user is more secure because a

smaller footprint exists should intrusions occur.

7.2. CI/CD Pipeline

We implemented a full CI/CD pipeline for automated testing, building, and deploy-
ment. Our CI/CD pipeline guarantees that code commits are checked against approved
automated testing before deployment, reducing the likelihood of sending bugs to produc-
tion. We operated in a monorepo setting, meaning the client and server applications were
in one repo with all files, folders, and assets, all of which our CI/CD pipeline could quickly
process.

Our CI/CD pipeline is orchestrated using GitHub Actions and consists of several inter-

connected workflows:
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1. Main CI/CD Workflow: This is the overall global workflow that drives the operation
behind everything and acts as the central orchestrator. It runs upon pushes and pull
requests to main. It uses path filtering to run when changes occur within the client or
server folder. It then starts the respective client or server workflows. This is a more
effective testing and deployment approach because it can hone in on specifically
what changed

2. Client CI/CD Workflow: This is the CI/CD workflow that executes for the client appli-
cation. It runs tests (lint, type checking, unit tests) and upon successful completion,
along with a successful push to the 'main’ branch, builds the client application and
deploys it to Vercel. It uses the required environment variables and uses 'vercel-action’
to complete the task of deployment

3. Server CI/CD Workflow: This is the CI/CD workflow that executes for the server
application. It runs linting, unit testing, and coverage testing. If there is a push to the
‘main’ branch, it builds the server application into a Docker image, tags the image,
and pushes it to Docker Hub. This gives this workflow the opportunity to set up
deployment on Render for the server app.

Automated monitoring tools are integrated within the pipeline to track system health
and notify administrators in case of failures. This automated approach streamlines our
development workflow, allowing us to rapidly iterate and deploy new features with confi-
dence.

7.3. Cloud Deployment

We deployed our application on cloud platforms to ensure high availability and scala-
bility. Two primary cloud hosting services are used:

Vercel We chose to deploy the frontend application to Vercel because of ease of deploy-
ment, scalability, and usage. Vercel allows for Git Integration, which means deployment
happens automatically with Git commits as well; a developer does not need to push the
latest version in production to implement it. The latest version goes live with a commit.
Furthermore, Vercel has great performance relative to frontends with a global CDN. It
doesn’t matter where in the world the user is; they can access the site with high-speed load
times. Vercel does well for scaling with traffic and demand; however, it can get costly. As
usage increases, scaling must be taken into consideration. Lastly, Vercel, like AWS, has

serverless functions and edge caching. Latency is reduced, and performance is enhanced.

Render Render is host to our backend application. Automatic scaling, managed databases,
and SSL ensure that deployment and maintenance of the backend service are seamless.
The backend, of which our CI/CD pipeline builds and deploys, operates in a compartmen-

talized and isolated environment on Render, making it a safe bet and functioning well for
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our needs. Additionally, Render requires management features that absolve much of the
necessary daily maintenance that would be required to sustain a backend.

7.4. Security Considerations

Application and user data security was embedded at various levels of the continuous
integration/continuous deployment pipeline. The following represent the key security
features generated: Frontend and backend communicate via TLS, meaning that no one but
the application and the user can see what information is transferred; there’s no third-party
access. CORS is configured to ensure that only specified domains can access the API.
There are API rate limits configured to ensure that nefarious users can’'t spam the system
and take it down via DoS attempts. The API key and database credentials are stored as
environment variables instead of hardcoded into the application.

7.5. Docker Compose Setup

We utilized a ‘docker-compose.yml’ file to manage multi-container deployments lo-
cally, ensuring seamless communication between services during development and test-
ing. The setup defines the backend service, Redis container, and networking configura-
tions.

version: "3.8"

services:
redis:

image: redis:alpine

ports:
"63790:6379"
volumes:
- redis_data:/data
networks:

- app-network
ml-server:
build:
container_name: crypto-predictor-server
ports:
"5000:5000"
volumes:
- ./models:/app/models
- ./logs:/app/logs
environment:
- FLASK_APP=app.py
- FLASK_ENV=production
- PYTHONUNBUFFERED=1
- CORS_ORIGINS=x*
depends_on:
- redis
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networks:

- app-network
restart: unless-stopped
healthcheck:

test: ["CMD", '"curl", "-f", "http://localhost:5000/health"]

interval: 30s

timeout: 10s

retries: 3

networks:
app-network:
driver: bridge
volumes:

redis_data:

Listing 10. Docker Compose Configuration

Listing 10 shows our Docker Compose configuration. This configuration ensures
efficient service orchestration, allowing each component to communicate securely and
reliably during development. We use named volumes for data persistence and health

checks to ensure the backend service is running correctly.

7.6. Dockerfile

The Dockerfile for the server application was created with an eye towards efficiency,
security, and maintainability. For the study it was followed much of the best practice
suggestions provided to create a container that would be secure, stable, and quickly

scalable.

FROM python:3.9-slim
WORKDIR /app
RUN apt-get update && apt-get install -y \
build_essential \
python3-dev \
&% rm -rf /var/lib/apt/lists/*
COPY requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
RUN pip install gunicorn eventlet
COPY

RUN mkdir -p models

ENV PYTHONUNBUFFERED=1
ENV FLASK_APP=app.py
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ENV FLASK_ENV=production
ENV PORT=5000
ENV REDIS_URL=redis://redis:6379/0

EXPOSE 5000
RUN useradd -m myuser
RUN chown -R myuser:myuser /app

USER myuser

CMD ["gunicorn", "--config", "gunicorn_config.py",

"--worker-class", "eventlet", "app:app"]

Listing 11. Dockerfile for Server Application

The Dockerfile for the server application is attached in Listing 11. It uses a Python
3.9-slim image as its base so that the container is as lightweight as possible with only the

necessary requirements to operate—even though it has the capacity for all requirement-based

dependencies. The RUN command for the setup installs necessary system and Python
dependencies, the optimal use of COPY moves application code, and ENTRYPOINT and
CMD ensure that appropriate functionality occurs when in production. Ultimately, a
non-root user is created, and ownership of permissions is altered upon execution for
security and separation of concerns. The app runs on Gunicorn within the server using
eventlet as the class of workers to facilitate asynchronous processing. Ultimately, this is
a containerized application based on minimal security and maintainable, scalable con-
tainerized environments for the necessary cryptocurrency price prediction application.
The CI/CD pipeline ensures rapid deployment with frill features operational under low
and high stress. Therefore, to cloud containerize with CI/CD to containerize with security

is to ensure everything runs secure, stable, scalable, and efficient.

7.7. GitHub Repository

The source code for this cryptocurrency price prediction system is publicly available

as an open-source project and can be accessed at here.

8. Conclusion

This thesis study offers a novel hybrid neural network modeling technique of hyperpa-
rameter tuning via Optuna and application across multiple deep learning architectures
to forecast cryptocurrency values. This is in relation to enhanced value forecasting pre-
cision as all models met an R-squared of 0.9582 for CNN, 0.9614 for LSTM, 0.9544 for
LSTM-CNN, and 0.9596 for CNN-LSTM. The various trained models are put through a
robustness experiment of 100+ hyperparameter combinations to produce four different

architectures of the four models with subsequent retraining validating the increases in
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accuracy and decreases in error. The relative results of this study indicate that the LSTM
model had the Minimum Squared Error (MSE) of 0.000627 and Achieved the lowest Mean
Absolute Error (MAE) 0f 0.018803 on SOL while no architecture surpassed the stability of
the CNN-LSTM hybrid (dropout: 0.140; learning rate: 0.00178). Moreover, we observed
that the optimal configurations vary per architecture: CNN requires a batch size of 128
and 150 epochs (filters 74, 54; kernel sizes 3, 5); LSTM needs a batch size of 64 and 200
epochs (units 113, 55); CNN-LSTM requires a batch size of 32 and 160 epochs (LSTM units
103, 16; filters 37). Lastly, our findings indicate that smaller kernels and the use of both
batch normalization and In terms of results, achieving momentum with the LeakyReLU
activation functions ensured the architectures arrived at a more stabilized, better-fitted
model. The SOL cryptocurrency was also the most predictable, as the architecture kept
an average R-squared value of above 0.95. Beyond empirical significance, this research
possesses practical significance as well. The use of WebSocket for real-time training
feedback and Redis for message queuing creates a feasible real-time setting with options
within the models dynamically updated in real time. Furthermore, the expected mean
average error (MAE) was consistent across all three versions—ranging from 0.018803 to
0.019855—meaning the findings replicated a successful predictability of the rendered
frameworks. Such findings not only... Thus, this not only contributes to the theoretical
expansions of deep learning methods in financial time series prediction, but also provides
the experimental basis for implementing algorithmic trading and evaluating real-world
applications. Future testing setups may involve more hybridizations, different attentions,
or even trading strategies based upon reinforcement learning for improved accuracy of

predictions and adaptability of systems in fluctuating financial environments.
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0.85

LSTM

58s

16

0.41

180

21.0

2.0

4.50e-04

27.0

33.0

3.0

1.46e-02

3.97e-04

0.63

LSTM

53s

64

0.37

150

104.0

4.0

5.33e-04

68.0

12.0

2.0

1.14e-02

2.36e-04

0.78

LSTM

35s

32

0.15

180

115.0

2.0

9.85e-03

108.0

41.0

1.0

6.22e-03

7.70e-05

0.93

LSTM
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0.40
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4.0

9.76e-03

30.0

50.0

3.0

1.35e-02

2.89e-04

0.73
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128

0.39

150

30.0

3.0

9.60e-04

60.0

21.0

3.0

1.36e-02

3.75e-04

0.65

LSTM
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6s
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0.22

120

71.0

5.0

9.71e-03

123.0

42.0

2.0

1.06e-02

1.78e-04

0.83

LSTM
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32

0.23

200

127.0

5.0

3.11e-03

51.0

41.0
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1.78e-02
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LSTM
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79.0

5.0

3.89e-03

85.0
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1.0

1.63e-02

3.13e-04

0.71
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200

74.0

3.0

5.07e-03

84.0

53.0

1.0

6.87e-03

9.20e-05
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LSTM
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38s

32

0.10

200

70.0

3.0

3.96e-03

84.0

60.0

2.0

7.47e-03

1.08e-04

0.90

LSTM

10s

16

0.10

100

4.79e-03

1.08e-02

1.65e-04

0.85

CNN-LSTM

39s

128

0.39

110

1.25e-04

1.27e-02

3.11e-04

0.71

CNN-LSTM

20s

64

0.20

130

7.46e-04

9.25e-03

1.44e-04

0.87

CNN-LSTM

38s

32

0.44

170

8.38e-03

1.22e-02

2.00e-04

0.81

CNN-LSTM

58s

64

0.20

180

3.51e-04

9.58e-03

1.62e-04

0.85

CNN-LSTM

32s

16

0.17

140

1.48e-03

6.05e-03

7.40e-05

0.93

CNN-LSTM

26s

16

0.13

110

1.93e-04

9.61e-03

1.70e-04

0.84

CNN-LSTM

49s

64

0.10

200

1.15e-04

1.05e-02

2.00e-04

0.81

CNN-LSTM
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25s

64

0.25

130

9.71e-03

5.94e-03

6.90e-05

0.94

CNN-LSTM
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128

0.42

110

4.67e-04

1.11e-02

2.19e-04

0.80

CNN-LSTM
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55s

16

0.32

160

3.09e-03

9.82e-03

1.50e-04

0.86

CNN-LSTM
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35s

16

0.16

140

2.19e-03

6.49e-03

7.50e-05

0.93

CNN-LSTM
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35s

16

0.29

100

3.25e-03

6.35e-03

7.90e-05

0.93

CNN-LSTM

6s

16

0.50

150

3.00e-03

9.29e-03

1.39¢-04

0.87

CNN-LSTM

37s

32

0.15

130

1.58e-03

6.09e-03

7.50e-05

0.93

CNN-LSTM

51s

64

0.34

140

75.0

2.0

7.11e-03

58.0

53.0

2.0

1.90e-02

6.25e-04

0.42

LSTM-CNN

48s

128

0.46

180

84.0

4.0

4.76e-03

128.0

61.0

3.0

2.22e-02

7.83e-04

0.27

LSTM-CNN

53s

32

0.41

190

65.0

5.0

9.08e-03

55.0

60.0

3.0

3.57e-02

1.53e-03

-0.43

LSTM-CNN

30s

64

0.43

130

115.0

2.0

1.01e-04

113.0

61.0

2.0

2.92e-02

1.12e-03

-0.05

LSTM-CNN

28s

64

0.28

120

17.0

2.0

6.62e-03

79.0

25.0

2.0

2.10e-02

8.19e-04

0.23

LSTM-CNN

35s

64

0.37

160

79.0

5.0

9.65e-04

54.0

55.0

1.0

1.15e-02

2.31e-04

0.78

LSTM-CNN

47s

64

0.39

150

92.0

5.0

2.19e-04

48.0

55.0

1.0

1.40e-02

3.08e-04

0.71

LSTM-CNN




50s(128(0.14|120{111.0/4.0(1.05e-03|52.0 |57.0(2.0|1.09e-02|2.08e-04|0.81 |LSTM-CNN

29s/1128(0.40({130(83.0 (4.0(3.42e-04|45.0 [12.0(2.0|2.28e-02(7.49e-04|0.30 |LSTM-CNN
10|46s(64 |0.31(180|71.0 [4.0|5.27e-04{47.0 |30.0/1.0/1.88e-02|4.95e-04|0.54 |LSTM-CNN
11({53s[16 |0.23({100/40.0 [3.0|1.54e-03{20.0 |45.0|/1.0/2.69e-02|1.03e-03/0.04 |LSTM-CNN
12|58 [16 |0.22(100/43.0 [3.0/1.76e-03{16.0 {44.0/1.0|/1.40e-02|3.60e-04|0.66 |LSTM-CNN
13|24s16 |0.21({160|45.0 [3.0/2.39e-03[16.0 {43.0/1.0|1.34e-02|3.02e-04|0.72 |LSTM-CNN
14|26s/16 |0.16(160|51.0 [3.0/2.78e-03[86.0 {41.0/1.0|3.81e-02|1.70e-03|-0.59|LSTM-CNN
15/16s|32 |0.50({160(55.0 [5.0(2.70e-03|88.0 [35.0/1.0/1.45e-02|3.89e-04|0.64 |LSTM-CNN
Appendix 3. Ethereum optuna hyperparameter results
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1 |41s|64 |0.27(140 2.11e-04 1.0/2.16e-02|8.83e-04(0.95 |[CNN
2 129s(128(0.14(110 1.61e-04 1.0/12.57e-02]1.21e-03|0.93 |CNN
3 132s5(128(0.21(130 8.56e-03 1.0/2.83e-02]1.29e-03|0.92 |CNN
4 |31s(128(0.40(150 1.00e-03 3.0/1.38e-01{2.13e-02|-0.28| CNN
5 132s5/128(0.38|150 6.22e-04 2.0/1.01e-01|1.15e-02|0.31 |CNN
6 |25s|/64 [0.41|110 1.23e-03 3.0|7.94e-02|7.43e-03|0.55 |CNN
7 130s/128/0.47(180 1.74e-03 2.0/2.54e-01/6.93e-02(-3.16|CNN
8 (46s|64 |0.14(200 5.12e-03 2.0/5.66e-02[4.20e-03|0.75 |CNN
9 [26s(128/0.34(120 1.85e-03 2.0/1.15e-01/1.49e-02(0.11 |[CNN
10(31s(128/0.19(150 7.16e-03 3.0/7.19e-02|6.26e-03(0.62 |[CNN
11/4s (32 [0.10(200 3.65e-03 2.0|4.44e-02|2.60e-03|0.84 |CNN
12149s(32 [0.11{200 3.91e-03 2.0|14.57e-02|2.87e-03|0.83 |CNN
13|47s({32 [0.17]180 3.91e-03 2.0/5.51e-02{3.91e-03|0.77 |CNN
14|4s (16 [0.27(200 3.93e-03 2.0/1.24e-01|1.71e-02|-0.03|CNN
15/46s({32 [0.11]180 5.96e-04 1.0/3.53e-02]1.86e-03|0.89 |CNN
16/19s|64 |0.23(180 5.11e-04 1.0/7.82e-02|7.16e-03(0.57 |CNN
17127s|16 |0.15(170 3.15e-04 1.0/5.40e-02(3.75e-03|0.78 |CNN
1826532 (0.24(170 5.40e-04 1.0/2.76e-02|1.27e-03(0.92 |CNN
19(/16s|64 |0.16(190 1.15e-04 3.0/4.38e-02|2.58e-03(0.85 |[CNN
20/16s(64 [0.32]160 2.17e-03 1.0/1.21e-01|1.64e-02|0.01 |CNN
21/18s(32 [0.10(190 3.16e-04 3.0|4.66e-02|2.86e-03|0.83 |CNN
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22|20s|32 (0.10/200 5.74e-03 2.0|4.46e-02|2.66e-03(0.84 |CNN
23/20s|32 (0.13/190 2.65e-03 2.0/6.53e-02|5.24e-03(0.69 |CNN
24/20s|32 (0.17|190 2.46e-03 2.0/6.10e-02 |4.68e-03(0.72 |CNN
25(21s(32 (0.13|170 8.02e-04 2.0(2.22e-029.07e-04|0.95 |CNN
26/29s|16 |0.20/190 1.26e-03 1.0/2.99¢-02|1.41e-03(0.92 |CNN
27/29s|16 |0.20/180 1.29¢-03 1.0|8.67e-02|8.83e-03(0.47 |CNN
28/23s|16 |0.25|160 9.81e-04 1.0/2.91e-02|1.30e-03(0.92 |CNN
29|32s|16 |0.20/190 1.49e-03 1.0/8.69¢-02|9.10e-03(0.45 |CNN
30(24s|16 |0.27|140 2.98e-04 1.0|3.55e-02|1.86e-03(0.89 |CNN
1 |59s/16 |0.18]130 2.08e-03 1.88e-02|7.32e-04|0.96 |LSTM
2 |7s 128]0.39/200 2.90e-04 3.50e-02|2.11e-03(0.87 |LSTM
3 |44s|16 |0.26|200 8.72e-04 2.34e-02|9.88e-04(0.94 |LSTM
4 |9s |128/0.38|200 1.04e-03 2.83e-02|1.42e-03(0.91 |LSTM
5 |25s]128(0.37|200 6.19e-04 2.44e-02|1.14e-03|0.93 |LSTM
6 |51s|64 |0.47|180 9.63e-03 2.04e-02|8.06e-04(0.95 |LSTM
7 |59s|32 (0.13/100 5.66e-04 2.54e-02|1.12e-03(0.93 |LSTM
8 |0s [32 |0.25/160 1.60e-04 3.96e-02|2.65e-03(0.84 |LSTM
9 |45s/16 |0.34|130 3.72e-04 2.06e-02|8.49e-04(0.95 |LSTM
10|6s |16 |0.26]180 1.29e-03 2.48e-02|1.05e-03(0.94 |LSTM
11|50s|64 |0.10(120 3.47e-03 2.07e-02|8.29e-04(0.95 |LSTM
12|46s/16 |0.19]150 2.14e-03 1.91e-02|7.46e-04|0.96 |LSTM
13|36s/16 |0.17|140 2.60e-03 2.11e-02|8.68e-04|0.95 |LSTM
14|29s/16 |0.19/160 2.94e-03 1.97e-02|7.63e-04|0.95 |LSTM
15/4s |16 |0.20|110 6.64e-03 1.92e-02|7.60e-04|0.95 |LSTM
16|44s|16 |0.14|140 1.88e-03 1.87e-02|7.31e-04|0.96 |LSTM
17|38s/16 |0.14|130 5.32e-03 1.81e-02/6.88e-04|0.96 |LSTM
18|14s(32 |0.23|140 1.86e-03 1.82e-02|7.03e-04|0.96 |LSTM
19/48s/64 |0.31]120 1.41e-03 2.25e-02|9.71e-04|0.94 |LSTM
20|16s|16 |0.14|100 4.97e-03 1.81e-02/6.93e-04|0.96 |LSTM
21|22s|16 |0.44/100 3.70e-03 1.99e-02(8.15e-04(0.95 |LSTM
22|22s|16 |0.15/110 4.08e-03 1.82e-02/6.92e-04|0.96 |LSTM
23|46s|16 |0.10|150 7.79e-03 2.19e-02|8.76€-04(0.95 |LSTM
24|55s|16 |0.11|160 9.29¢-03 1.89e-02|7.16e-04|0.96 |LSTM
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Duration

Batch Size

Dropout Rate

Filters

Kernel Size

Learning Rate

LSTM Unitsl

LSTM Units2

Pool Size

83

S

88
22

=

R2 Score

=]
—
[\

0

8.80e-03

4.10e-02

2.39e-03

0.86

=]
—
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0

9.41e-03

2.41e-02

1.07e-03

0.94

0.22

— | |
% | 3| 5 | Epochs

0

7.26e-03

1.84e-02

7.06e-04

0.96

0.12

160

6.42e-03

1.83e-02

7.04e-04

0.96

0.16

170

9.66e-03

2.49e-02

1.04e-03

0.94

0.28

150

4.80e-03

3.74e-02

1.93e-03

0.88

128

0.45

150

47.0

5.0

7.90e-03

105.0

42.0

1.0

2.11e-02

8.97e-04

0.95

CNN-LSTM

64

0.15

200

97.0

2.0

1.45e-03

35.0

17.0

2.0

1.98e-02

7.62e-04

0.95

CNN-LSTM

64

0.34

140

34.0

4.0

1.97e-04

121.0

61.0

3.0

2.94e-02

1.55e-03

0.91

CNN-LSTM

64

0.30

190

101.0

2.0

4.02e-03

100.0

27.0

3.0

1.96e-02

7.51e-04

0.95

CNN-LSTM

128

0.47

190

96.0

3.0

3.82e-04

106.0

28.0

3.0

3.55e-02

2.11e-03

0.87

CNN-LSTM

128

0.15

110

35.0

2.0

2.05e-04

88.0

20.0

1.0

3.41e-02

2.02e-03

0.88

CNN-LSTM

55s
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0.21

150

82.0

3.0

7.58e-03

46.0

30.0

2.0

2.48e-02

1.12e-03

0.93

CNN-LSTM

30s

16

0.42

140

101.0

3.0

8.71e-04

55.0
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1.0

1.97e-02
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0.95

CNN-LSTM
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120
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CNN-LSTM

[a—
[u—

28

64

0.22

170

128.0

2.0

1.61e-03

17.0

9.0

2.0

2.00e-02

8.28e-04

0.95
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CNN-LSTM

—
(=2}

52s

64

0.11

180

86.0

5.0

5.82e-04

72.0

44.0

2.0

1.92e-02

7.58e-04

0.95
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CNN-LSTM
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Appendix 4.

Data processing pipeline

class DataProcessor:
def __init__(self,

config:
self.config = config

Optional [float] = None
Optional [float] = None

self .mean:
self.std:

self .df: Optional[pd.DataFrame] =

ModelConfig) :

None

self.logger = structlog.get_logger (__name__)

def create_windows (self, data: np.ndarray,

-> Tuple[np.ndarray,

np.ndarray]:

window_size: int)

X, vy = [0, (1

for i in range(len(data) - window_size):
X.append(datal[i:i + window_size])
y.append (datal[i + window_sizel])

return np.array(X), np.array(y)

def fetch_and_prepare_data(self,
str)

ticker_symbol:
-> Tuple[

str,

start_date: str, end_date:

Tuple [np.ndarray, np.ndarray], Tuplel[np.ndarray, np.ndarrayl],

np.ndarray

self.logger.info("fetching_data", ticker=ticker_symbol,

start_date=start_date, end_date=end_date)

try:

self.df = yf.Ticker(ticker_symbol).history(start=start_dat

end=end_date)

if self.df.empty:
raise ValueError (£f"No data found for
ticker {ticker_symboll}")

close_prices = self.df[’Close’].values
if len(close_prices) < self.config.lookback:

raise ValueError (f"Insufficient data points")

self .mean = close_prices.mean ()

self.std = close_prices.std()

normalized_prices = (close_prices - self.mean) / self.std
train_size = int(len(normalized_prices) x*
self.config.train_test_split)

train_data = normalized_prices[:train_size]

test_data = normalized_prices[train_size:]

X_train, y_train=self.create_windows(train_data,
self.config.lookback)

X_test, y_test=self.create_windows (test_data,
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self.config.lookback)

return (X_train, y_train), (X_test, y_test), close_prices
except Exception as e:
self .logger.error ("data_preparation_failed", error=str(e))

raise

Listing 12. DataProcessor

Appendix 5. Server Index App.py File

from flask import Flask, jsonify, request
from flask_socketio import SocketIO
import structlog

from datetime import datetime, timedelta
import redis

from flask_cors import CORS

import os

from validations import TrainingRequest, PredictionRequest

from ml_app.config import ModelConfig

from ml_app.predictor import CryptoPredictor

from ml_app.websocket.manager import WebSocketManager

from utils.helpers import fetch_historical_data, make_predictions

from utils.logger import setup_logging, get_logger,\
RequestIdContext

app = Flask(__name__)
CORS (app, resources={

" /" {
"origins": os.getenv(’CORS_ORIGINS’>, ’>*’),
"methods": ["GET", "POST", "PUT", "DELETE"],
"allow_headers": ["Content-Type", "Authorization"]
}

b
redis_client = redis.Redis(host=’redis’, port=6379, db=0)

socketio = SocketID(
app .
cors_allowed_origins=os.getenv (’CORS_ORIGINS’>, ’%’),
message_queue=’redis://redis:6379/07,

async_mode=’eventlet’

)
websocket_manager = WebSocketManager (socketio)
setup_logging(log_level=os.getenv("LOG_LEVEL", "INFQO"))
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logger = get_logger (__name__)

@app.route(’/train’, methods=[’P0ST’])
> def train_model():...

Q@app.route(’/predict’, methods=[’P0OST’])
>def predict_model():...

@app.route(’/health’, methods=[’GET’])
>def health_check():...

@app.errorhandler (Exception)
def handle_error (error):
logger.error ("unexpected_error",
error=str (error),

error_type=type(error).__name__,

exc_info=True)

return jsonify ({

error’: ’Internal server error’,
’message’: str(error)
1, 500

Qapp.after_request
def after_request(response):
response.headers.add(’Access-Control -Allow-0Origin’,
os.getenv (’CORS_ORIGINS’, %))
response.headers.add(’Access-Control -Allow-Headers’,
’Content -Type , Authorization?’)
response.headers.add(’Access-Control-Allow-Methods’,
>GET ,PUT ,POST ,DELETE , OPTIONS’)
response.headers.add(’Access-Control -Allow-Credentials’,
’true’)

return response

if __name__ == ’__main__"’:

logger.info("starting_server")

socketio.run(app, host=’0.0.0.0’, port=5000, debug=True)

Listing 13. File: app.py

Appendix 6. Optuna Optimization Code

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import ConviD, MaxPoolinglD,\
Flatten, Dense, LSTM, Dropout, Reshape, LeakyRelLU

from tensorflow.keras.optimizers import Adam

def build_cnn(params, input_shape):
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def
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"""Build and compile a CNN model with given parameters.”"""

if hasattr (params, ’suggest_int?’):
filtersl = params.suggest_int(’filtersl’, 16, 128)
filters2 = params.suggest_int(’filters2’, 16, 128)

kernel_sizel = params.suggest_int(’kernel_sizel’, 2, 5)
kernel_size2 = params.suggest_int(’kernel_size2’, 2, 5)
pool_size = params.suggest_int(’pool_size’, 1, 3)
dropout_rate = params.suggest_float(’dropout_rate’, 0.1, 0.5)
learning_rate = params.suggest_float(’learning_rate’, le-4,
le-2, log=True)

else:
filtersl = int(params[’filtersl’])
filters2 = int(params[’filters2’])
kernel_sizel = int(params[’kernel_sizel’])
kernel_size2 = int(params[’kernel_size2’])
pool_size = int(params[’pool_size’])
dropout_rate = float(params[’dropout_rate’])
learning_rate = float(params[’learning_rate’])

model = Sequential ([
ConviD(filters=filtersl, kernel_size=kernel_sizel,
activation=’relu’, input_shape=input_shape, padding=’same’),
MaxPoolingiD (pool_size=pool_size, padding=’same’),
Dropout (dropout_rate),
ConviD(filters=filters2, kernel_size=kernel_size2,
activation=’relu’, padding=’same’),
MaxPoolinglD (pool_size=pool_size, padding=’same’),
Flatten (),
Dense (units=1),
LeakyReLU(alpha=0.1)
D
model.compile (optimizer=Adam(learning_rate=learning_rate),
loss=’mean_squared_error’)

return model

build_lstm(params, input_shape):
"""Buyild and compile an LSTM model with given parameters. """

if hasattr (params, ’suggest_int?’):
unitsl = params.suggest_int (’unitsl’, 16, 128)
units2 = params.suggest_int(’units2’, 8, 64)
dropout_rate = params.suggest_float(’dropout_rate’,
0.1, 0.5)
learning_rate = params.suggest_float(’learning_rate’,

le-4, 1e-2, log=True)

else:
unitsl = int(params[’units1’])
units2 = int(params[’units2’])
dropout_rate = float(params[’dropout_rate’])

learning_rate = float(params[’learning_rate’])
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model = Sequential ([

D

LSTM(units=unitsl, return_sequences=True,
input_shape=input_shape),

Dropout (dropout_rate),
LSTM(units=units2),

Dropout (dropout_rate),

Dense (units=1),

LeakyReLU (alpha=0.1)

model.compile (optimizer=Adam(learning_rate=learning_rate),

loss=’mean_squared_error’)

return model

build_cnn_lstm(params, input_shape):

"""Build and compile a CNN-LSTM model with given parameters.

nnn

if hasattr(params, ’suggest_int’):
filters = params.suggest_int(’filters’, 16, 128)
kernel_size = params.suggest_int(’kernel_size’, 2, 5)
pool_size = params.suggest_int(’pool_size’, 1, 3)

lstm_unitsl = params.suggest_int(’lstm_unitsl’, 16, 128)
lstm_units2 = params.suggest_int(’lstm_units2’, 8, 64)

dropout_rate = params.suggest_float(’dropout_rate’, 0.1,
0.5)
learning_rate = params.suggest_float(’learning_rate’, le-4,

le-2, log=True)

else:

filters = int(params[’filters’])

kernel_size = int(params[’kernel_size’])
pool_size = int(params[’pool_size’])
lstm_unitsl = int(params[’lstm_units1’])
lstm_units2 = int(params[’lstm_units2’])
dropout_rate = float(params[’dropout_rate’])
learning_rate = float(params[’learning_rate’])

model = Sequential ([

D

ConviD(filters=filters, kernel_size=kernel_size,
activation=’relu’,

input_shape=input_shape, padding=’same’),
MaxPoolinglD (pool_size=pool_size, padding=’same’),
Dropout (dropout_rate),

Reshape ((-1, filters)),

LSTM(units=1stm_unitsl, return_sequences=True),
Dropout (dropout_rate),

LSTM(units=1lstm_units2),

Dropout (dropout_rate),

Dense (units=1),

LeakyReLU (alpha=0.1)

model.compile (optimizer=Adam(learning_rate=learning_rate),

loss=’mean_squared_error’)
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return model

build_lstm_cnn(params, input_shape):
"""Butld and compile an LSTM-CNN model with given parameters.
if hasattr (params, ’suggest_int’):
lstm_unitsl = params.suggest_int(’lstm_unitsl’, 16, 128)
lstm_units2 = params.suggest_int(’lstm_units2’, 8, 64)
filters = params.suggest_int(’filters’, 16, 128)
kernel_size = params.suggest_int(’kernel_size’, 2, 5)
pool_size = params.suggest_int(’pool_size’, 1, 3)
dropout_rate = params.suggest_float(’dropout_rate’, 0.1,
learning_rate = params.suggest_float(’learning_rate’,
le-4, 1e-2, log=True)
else:
lstm_unitsl = int(params[’lstm_units1’])
lstm_units2 = int(params[’lstm_units2’])
filters = int(params[’filters’])
kernel_size = int(params[’kernel_size’])
pool_size = int(params[’pool_size’])
dropout_rate = float(params[’dropout_rate’])
learning_rate = float(params[’learning_rate’])

model = Sequential ([
LSTM(units=1stm_unitsl, return_sequences=True,
input_shape=input_shape),
Dropout (dropout_rate),
LSTM(units=1stm_units2, return_sequences=True),
Dropout (dropout_rate),
Reshape ((-1, lstm_units2)),
ConviD(filters=filters, kernel_size=kernel_size,
activation=’relu’, padding=’same’),
MaxPoolinglD (pool_size=pool_size, padding=’same’),
Dropout (dropout_rate),
Flatten (),
Dense (units=1),
LeakyReLU(alpha=0.1)
D
model.compile (optimizer=Adam(learning_rate=learning_rate),
loss=’mean_squared_error’)

return model

naunn

0.5)

Listing 14. Model Building Functions

Appendix 7. Client Side Custom Websocket Hook

"use client";

import { useState, useCallback, useEffect } from "react";

import { io, Socket } from "socket.io-client";
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import { ModelStages } from "@/constants/model-stages.constant";
import { TrainingUpdateResponse } from "@/types/training-update";
import { EvaluatingUpdateResponse } from "@/types/evaluating-update";
import { VisualizingUpdateResponse } from "@/types/visualizing-update"

const SOCKET_URL = process.env.NEXT_PUBLIC_WS_URL||"ws://localhost:500

export function useModelSocket () {

const [isConnected, setIsConnected] = useState<boolean>(false);
const [error, setError] = useState<Error | null>(null);
const [progressData, setProgressDatal] = useState<{

training?: TrainingUpdateResponse;
evaluating?: EvaluatingUpdateResponse;

visualizing?: VisualizingUpdateResponse;

>

const [currentStage, setCurrentStage] = useState<ModelStages >(
ModelStages . PARAMETERS

)

const [currentProgress, setCurrentProgress] = useState<number >(0);

const handleTrainingUpdate = useCallback((data:
TrainingUpdateResponse)
=> {
setProgressData ((prev) => ({ ...prev, training: data }));
setCurrentStage (ModelStages.TRAINING) ;
setCurrentProgress (data.data.progress) ;

}, [1D;

const handleEvaluationUpdate = useCallback(
(data: EvaluatingUpdateResponse) => {
setProgressData ((prev) => ({ ...prev, evaluating: data }));
setCurrentStage (ModelStages.EVALUATING) ;
setCurrentProgress (data.data.progress) ;
},
(]
)

const handleVisualizationUpdate = useCallback(
(data: VisualizingUpdateResponse) => {
setProgressData ((prev) => ({ ...prev, visualizing: data 1}));
setCurrentStage (ModelStages.VISUALIZING) ;
setCurrentProgress (data.data.progress) ;
if (data.data.progress === 100)
setCurrentStage (ModelStages .PREDICTING) ;

useEffect (() => {
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const socket: Socket = io(SOCKET_URL, {
transports: ["websocket"],

B

socket.on("connect", () => {
setIsConnected (true) ;
console.log("Connected to WebSocket server");
B
socket.on("connect_error", (err) => {
setError (new Error(‘Connection failed: ${err.messagel}‘));
console.error (‘Connection failed: ${err.message}‘);
B
socket.on("disconnect", () => setIsConnected(false));
socket.on("training_update", handleTrainingUpdate) ;
socket.on("evaluating_update", handleEvaluationUpdate) ;

socket.on("visualizing_update", handleVisualizationUpdate);

return () => {
socket.disconnect () ;
socket.off ("training_update", handleTrainingUpdate);
socket.off ("evaluating_update", handleEvaluationUpdate) ;
socket.off ("visualizing_update", handleVisualizationUpdate);
}s
}, [handleTrainingUpdate, handleEvaluationUpdate,
handleVisualizationUpdate]) ;

const resetState = useCallback(() => {
setProgressData ({});
setError (null) ;
setCurrentStage (ModelStages .PARAMETERS) ;
setCurrentProgress (0) ;

}, [1D;

const isStageComplete = useCallback(

(stage: ModelStages) => {
const stageOrder = Object.values(ModelStages);
const currentIndex = stageOrder.index0f (currentStage);
const stageIndex = stageOrder.indexO0f (stage);
return currentIndex > stagelndex;

},

[currentStagel

)

return {
isConnected,
error,
progressData,
currentStage,
currentProgress,

setCurrentStage,




104
105
106
107

};

resetState,

isStageComplete,

Listing 15. Custom React Hook for Websocket

67



	Introduction
	Motivation
	Challenges in Cryptocurrency Price Prediction
	Contributions
	Thesis Structure

	Related Work
	System Architecture
	Machine Learning Development
	Data
	Descriptive Statistics and Data Characteristics
	Dataset Splitting and Normalization
	Stationarity and Data Transformations

	Preprocessing Techniques
	Model Architectures and Layers
	Convolutional Neural Network (CNN)
	Long Short-Term Memory (LSTM)
	CNN-LSTM Hybrid Model
	LSTM-CNN Hybrid Model

	Hyperparameter Optimization

	Backend Development
	API Design and Implementation
	Real-time Communication and WebSockets
	Request Validation with Pydantic
	Redis Integration

	Frontend Development
	Architecture and Design
	Dashboard Integration
	Widgets
	Market Overview Widget
	Technical Analysis Widget
	Machine Learning Model Widget

	WebSocket Communication
	API Integration
	Theme
	Environment Configuration

	DevOps and Deployment
	Containerization
	CI/CD Pipeline
	Cloud Deployment
	Security Considerations
	Docker Compose Setup
	Dockerfile
	GitHub Repository

	Conclusion
	References
	List of Symbols and Abbreviations
	List of Figures
	List of Tables
	List of Appendices

